قسمت سوم پادکست دموورژن با عنوان «برنامه‌نویسی بدون کد، توهم و واقعیت» در پخش کننده‌های پادکست نظیر CastBox و کانال تلگرام پادکست منتشر شد.

توی قسمت سوم پادکست دموورژن، سراغ یه الگو و ترند تاثیرگذار توی برنامه‌نویسی رفتیم، اون هم ساده‌تر شدن و اتوماتیک شدن همه‌چیز هستش، می‌خوایم ببینیم این ترند تا الان چه دست آورد‌هایی توی Back-end و Front-end و ‌Data Science داشته، چه کارهایی می‌شه باهاش کرد، تعدادی ابزار رو باهم بررسی می‌کنیم که ابزارهای جدیدی در راستای این ترند هستند، توانایی‌ها و محدودیت‌هاشون رو می‌بینیم، توی راستای ساخت سریع یک سرویس از لحاظ فنی، برای نمونه Instagram و Tinder رو بررسی می‌کنیم، که چجوری میشه با این قابلیت‌های این ابزارهای ساده‌کننده این سرویس‌ها رو ساخت و کجاها ممکنه مشکل ایجاد بشه.

کمتر از یک روز گذشته بود که آسیب پذیری امنیتی جدید دروپال که یکی از امن‌ترین سیستم‌های مدیریت محتوای متن‌باز موجود است منتشر شد. معمولا اولین واکنش‌های بعد از این چنین رویدادهایی این است که در گروه‌ها و انجمن‌های مختلف بحث پیرامون ارتباط امنیت با متن‌باز و یا متن‌بسته بودن نرم‌افزار شکل می‌گیرد. در این میان مهم است که به چند نکته که در ادامه می‌خوانیم توجه کنیم.


ادامه مطلب

مقدمه
پیش از این برنامه نویسی پویا را مطرح کرده بودیم، امروز یک سبک از برنامه نویسی پویا به اسم Bitmask را به همراه حل مسئله شماره 10911 از UVA مطرح میکنیم، که به نسبت مسئله ساده ای هست. وقتی که بحث پیاده سازی مجموعه ها در میان باشد Bit Mask ها مطرح میشوند.

خلاصه مسئله
در این مسئله که میتوانید جزیاتش را از اینجا بخوانید تعدادی دانشجو برای انجام یک تمرین میبایست به تیم های دوتایی تقسیم بشوند، ورودی مسئله N با شرط کوچک تر بودن از 9، و همچنین موقعیت 2N دانشجو هست هدف مسئله مینیمم سازی مجموع فاصله دو عضو هر تیم هست. ابتدا ممکن است راه حل های حریصانه در شرایط این مسئله درست به نظر برسند. برای مثال هر دانشجو را با نزدیک ترین دانشجو انتخاب نشده جفت کنیم. اما به راحتی میتوان با مثال های نقض پاسخگویی الگوریتم حریصانه را زیر سوال برد. همچنین تبدیل این گراف به یک گراف دو بخشی اشتباه بوده زیرا محدودیتی برای انتخاب همکار یک دانشجو وجود ندارد.
ادامه مطلب

مقدمه
قبل از این داده ساختار Segment Tree را به صورت تئوری مورد بحث قرار دادیم ، امروز مسئله UVA 12086 - Potentiometers یا مقاومت متغییر که با استفاده از این ساختمان داده قابل حل میباشد را پیاده سازی میکنیم.


متن مسئله
PDF مسئله از اینجا قابل دریافت است ، خلاصه متن این است که N مقاومت متغییر روی یک خط قرار گرفتند ، و مقدار اولیه هریک را داریم ، باید به تعداد M دستور پاسخ بدهیم دو نوع دستور داریم
نوع اول : مقدار مقاومت x را به r تغییر بده
نوع دوم : مقاومت معادل r تا l را چاپ کن ، که معادل با جمع تک تک مقاومت های این بازه میباشد.


راه حل
ابتدا راه حل ساده یعنی پیاده سازی همین کار با دو حلقه تو در تو به نظر درست می آید اما مرتبه این الگوریتم O(NM) میباشد که با توجه اینکه N میتواند تا 200000 باشد ، و M نیز میتواند تا 200000 باشد بطور تقریبی میتوان حدس زد که این الگوریتم نیاز به زمان اجرای 400 ثانیه ای تنها برای یک تست دارد و نتیجه این ارسال بدون شک Time Limit Executed میباشد ، برنامه میبایست زیر 3 ثانیه تمامی دستورات تمام تست ها را پاسخ گو باشد. 

ادامه مطلب

مقدمه
کار بر روی بازه های بزرگ ، شامل انجام بروز رسانی های تکراری و بدست آوردن یک مقدار برای یک بازه یکی از چالش های مطرح شده در علوم کامپیوتر است در این نوشتار سعی شده به بررسی داده ساختار پیشرفته ای به نام Segment Tree پرداخته شود که در مسائلی که قابلیت مطرح شدن دارد میتواند بسیار سریع ظاهر شود همچنین داده ساختار دیگری با نام  Sqrt Decomposition وجود دارد که کاربردی شبیه به Segment Tree دارد.


Segment Tree چیست؟

به بیان ساده میتوان گفت Segment Tree خلاصه کردن دو دویی یک بازه میباشد.
فرض کنید یک آرایه از 10000 ساختمان به ترتیب نامشخص که در یک ردیف قرار گرفته اند را داریم. میخواهیم در یک بازه از a تا b بلند ترین ساختمان را پیدا کنیم، ما از قبل میدانیم که بلند ترین ساختمان در 5000 ساختمان اول کدام است.  به عبارت دیگر بیشینه  بازه 1 تا 5000 را داریم ، چه استفاده ای میتوانیم از بیشینه این بازه کنیم؟ جواب ساده است اگر 1 تا 5000 زیر بازه بازه انتخابی بود میتوانیم از جستجو در این بخش صرف نظر کنیم و از مقدار ذخیره شده استفاده کنیم.
برای مثال بازه 1 تا 7000 را در نظر بگیرید. کافیست بیشینه ذخیره شده را با بیشینه بازه 5001 تا 7000 مقایسه کنیم. در این مثال نسبت به الگوریتم اولیه ( جستجو از a تا b برای پیدا کردن بیشینه ) 5000 مقایسه را صرف نظر کرده ایم زیرا بلند ترین ساختمان 5000 خانه اول را میدانیم و کافیست این مقدار را با 2000 ساختمان بعدی مقایسه کنیم.
این یک مثال ساده بود در عمل در Segment Tree بازه های خیلی بیشتری با یک نظم دو دویی ذخیره میشود و در بدترین حالت ممکن تعداد مقایسه ها به Log(N) میرسد که بسیار در مقایسه با N قابل توجه میباشد.
در مثال بالا الگوریتم اولیه در بدترین حالت مقدار 10000 مقایسه را انجام می دهد اما استفاده از Segment Tree این مقدار را در بدترین حالت به 14 مقایسه کاهش میدهد.

ادامه مطلب

مقدمه
 بعد از اینکه Dynamic Programming را به صورت کلی مورد بازبینی قرار دادیم. طبق قراری که گذاشته شد در این مطلب و مطالب بعدی به توضیح بیشتر در این زمینه میپردازیم.
بد نیست بدانید که برنامه نویسی پویا دارای یک سری مسئله کلیشه مانند:

  • کولپشتی صفر و یک 01 Knapsack
  • کوله پشتی Knapsack
  • طولانی ترین زیر آرایه همسان Longest Common Sequence
  • طولانی ترین زیر آرایه صعودی Longest Increasing Sequence

می باشد. برای این مسائل به حد کافی آموزش در اینترنت وجود دارد توصیه میشود که این مطالب را به عنوان تمرین بیشتر مطالعه کنید.
این مطلب در مورد حل مسئله RNA Molecules مسابقه ملی اینترنتی 2013 سایت شریف  با استفاده از تکنیک برنامه نویسی پویا میباشد. 

ادامه مطلب

در مطالب گذشته سوال کارت های برابر را حل کردیم حل اول کارت های برابر

حل قدیمی از چند جهت اشکال داشت ... اول اینکه بسیار ناخوانا بود و رفع عیب های احتمالی بوجود آمده سخت بود.

دوم اینکه دارای پیچیدگی زمانی O(N2M4) بود که با توجه به N کمتر از 100 و M=5 این کد Accept شد اما برای مسئله مشابه با M های بزرگتر ، برای مثال M=100 برنامه ما در محدوده زمانی مورد نظر به جواب نمیرسید و نتیجه ارسال کد Time Limit Executed میشد.

برای حل این سوال اینبار از یکی از Data Structure های C++ Standard Library به نام Bitset استفاده میکنیم که میتوان از این Solution به عنوان مثالی برای یادگیری Bitset نیز استفاده کرد.

میشود Bitset را به عنوان یک آرایه ای از متغیر Boolean تعریف کرد، اما این تعریف بسیار ناقص میباشد زیرا برای یک آرایه Boolean توابعی مانند شیفت به چپ ، شیفت به راست ، نقیض ، مساوی بودن ، OR , AND , XOR با یک آرایه Boolean دیگر وجود ندارد و برای پیاده سازی هریک نیاز به تابع نویسی داریم. اما در Bitset تمام این امکانات گنجانده شده است.

ادامه مطلب

مقدمه

بسیاری از مسائل برنامه نویسی تنها با استفاده از Dynamic Programming حل میشوند در این نوشتار سعی شده که طرح کلی برنامه نویسی پویا و دلیل و مزایای استفاده از آن با چندین پیاده سازی برای تابع Fibonacci بیان شود. در مطالب آینده مثال های مهم تر و به نسبت پیچیده تری قرار میگیرد.


برنامه نویسی پویا یا Dynamic Programming چیست ؟

همه شما کم و بیش با الگوریتم ها یا برنامه هایی که به صورت بازگشتی عمل میکنند اطلاع دارید. حل یک مسئله با حل کردن یک یا چندین زیر مسئله .

در استفاده از تکنیک برنامه نویسی پویا ما حل مسئله را توسط حل مسئله های کوچکتر بیان میکنیم با این تفاوت که با ذخیره سازی از محاسبه دوباره اجتناب میکنیم.

ادامه مطلب

الگوریتم حریصانه چیست؟
الگوریتم حریصانه یا آزمند الگوریتمی است که مبنای آن بر انتخاب عنصر یا مسیری که در هر مرحله بهترین به نظر میرسد بدون توجه به انتخاب های قبل یا بعد میباشد. قبل پیاده سازی این الگوریتم باید ابتدا اثبات کنیم که بهترین انتخاب در هر مرحله به طور کلی بهترین انتخاب میباشد در غیر این صورت به جواب نادرستی میرسیم برای مثال نمیتوانیم در مسئله کوتاه ترین فاصله بین دو گره در گراف از الگوریتم حریصانه استفاده کنیم .

کجا نمیتوان از الگوریتم حریصانه استفاده کرد؟

گراف بدون جهت زیر را در نظر بگیرید.

گراف نمونه

برای پیدا کردن کوتاه ترین مسیر بین گره A   و D اگر به صورت حریصانه عمل کنیم  یال A-C از یال A-B  دارای وزن کمتری میباشد پس یال A-C  را در نظر میگیریم ولی در ادامه مجبوریم از تنها انتخاب یعنی C-D استفاده کنیم و به گره  D برسیم. طول مسیر 9 + 15 یعنی 24 میباشد اما در صورتی که در ابتدا یال A-B را انتخاب کرده بودیم  با اینکه نسبت به A-C در مرحله اول انتخاب بدتری بود اما در ادامه مسیر بهینه تر و کوتاه تری را داشتیم.
پس نمیتوان از الگوریتم حریصانه در پیدا کردن کوتاه ترین میسر بین دو گره استفاده کرد برای اینکار میتوان از الگوریتم هایی مثل Dijkstra استفاده کرد که به این مقاله مربوط نمیشود.
اما باید بدانیم که اگر در مسئله ای الگوریتم حریصانه درست باشد بی شک بهترین راه حل برای آن مسئله حریصانه است چون نسبت به بقییه الگوریتم ها دارای پیچیده گی زمانی کمتری میباشد.
ما بنا بر روال همیشگی امروز یک مسئله ICPC – ACM را برای مثال انتخاب کرده ایم که در حل آن از الگوریتم حریصانه میتوان استفاده کرد.
ابتدا متن سوال را مرور میکنیم

ادامه مطلب

سلام دوستان
امروز میخواهیم یک مبحث پر کاربرد در جاوا را توضیح دهیم Timer در برنامه نویسی کاربرد های بسیاری دارد از کاربرد در یک سیستم اندازه گیری زمان گرفته تا بروز رسانی زمان و تاریخ در یک برنامه تجاری.
کار با Timer در JSwing جاوا بنظر عجیب می آید چون مثل C# یا Visual Basic یک کنترل خاص به Timer اختصاص داده نشده است ( حداقل در Netbeans چنین کنترلی وجود ندارد)

ادامه مطلب